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Abstract* 
Aim. From a physical point of view, in a basketball, when a player make a basketball throw, there are 

several factors that interfere that determine the ball's trajectory. The most important factors are: the weight of 
the ball, the speed at which the ball is launched by the player and the angle at which it is launched. There are 
also other factors that are not so important, such as air resistance, as well as the so-called rotational effect 
(Magnus effect), which is due to all the interaction with air, but it is of another nature , Being directly influenced 
by both the instantaneous speed of the ball and the angular rotation speed of the ball. 

 In this article we will treat the perfect throw to the basket in which the player attempts to execute a 
distance throw, outside the half-circle of 6.75 meters, so that the ball penetrates the basket without touching the 
ring. 

Conclusions. Some models and assumptions allow us to calculate an approximate optimal angle, which 
would fall in the vicinity of 49°, for throwing speeds around a minimum of 8.2 m/s. When the throw angle drops 
noticeably below this value, the throw speed increases and the angle of entry in the basket decreases, lessening 
the chances of marking. On the other hand, when the throw angle increases noticeably, the throwing speed 
increases similarly, and the flight time is the same, which reduces the chances of the ball entering the basket. 
The more the player prints the ball at a higher angular speed, the more it has to print a lower initial speed, or to 
throw at higher angles (the input angles are even higher), both improving less chances of success. 
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Introduction 
Throwing in the basket is the technical 

element through which the goal of the game is 
achieved - the score. For this reason, it is one of the 
most attractive elements, demanding the highest 
accuracy, the correct acquisition of the movement 
and the increase of individual responsibility. 
(Predescu, Ghițescu, 2001) 

 In basketball, throwing a basket is an 
important moment depending on the effort of all 
teammates in the respective game phase (Negrea, 
2011; Negrea 2016).  

In basketball, basketball throws must not be 
accidental, made without any discernment, they 
must have a tactical justification of execution at the 
time of the game and be based on a well-trained 
technique. (Predescu, Grădinaru, 2005; Vasilescu, 
1998) 

In order to better understand how the factors 
that act during the throw-in to basketball basket, 
the following figure was formed, where the forces 
that act on a moving ball at any moment were 
represented. 
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G = weight 
Fr = force resistance 
Fm = magnus force effect 
g = acceleration due to gravity 
v = speed 
ῳ = angular velocity 
ρ = air density 
R = race 
r = viscosity coefficient 
 We note that the force of resistance opposes 
the speed, always aiming to slow the ball, while the 
Magnus effect force is perpendicular to both the 
velocity vector and the velocity vector, the sense of 
force being given by the drill rule. In order to avoid 
the lateral deviation in the ball trajectory (after the 
Oz direction), the Magnus force must remain in the 
xOy plane, that is, the angular velocity vector is 
perpendicular to this plane. In other words, the ball 
must rotate either forward or back but not 
sideways. In the upper drawing, we notice that the 
ball is rotating backwards (the angular velocity 
vector exits the plane). It is natural for the ball to 
make such a spin, due to the movement the player's 
palm is doing before the throw. Thus, the Magnus 
force is oriented towards the outside of the 
trajectory, predominantly in the vertical direction, 
having the tendency to keep the ball in the air on a 
higher trajectory, which is advantageous, as we will 
see below. Also, by imparting the ball a controlled 
spin back, the player avoids giving the ball a spin 
that can divert the ball from the trajectory. 
 In a rigorous physical approach that follows 
the exact trajectory of the ball, the forces, 
accelerations and velocities on the Ox and Oy axes 
are first projected, and using the mechanics 
principle II along with the formulas above, we 
obtain a system of two differential equations . After 
solving these equations, the parametric equations x 
(t) and y (t) (where x and y are spatial coordinates 
and t is the time) result from exponential functions. 
The solution of the system of differential equations 
and the exact forms of the two parametric 
equations are quite elaborate and not very relevant 
to the present subject, they are not treated. 
 Instead, we can choose a simplified 
approach to the problem, which also gives us 
enough precision for this situation. Thus, we will 
neglect the strength of the air resistance, the 
coefficient of air viscosity "r" being quite small. 
Also, because in the course of the movement the 
velocity direction is predominantly horizontal and 
the Magnus force implicitly vertical, we can only 
consider the vertical component of it, which 
depends on the horizontal speed.  
 Thus, we only remain with forces acting in 
the vertical direction, ie the weight and vertical 

component of the Magnus force. By neglecting the 
forces on the horizontal axis (Ox), we neglect 
implicitly the acceleration in this direction, 
considering the constant horizontal speed, as well 
as the constant Magnus force that depends on it, 
constant. 

 

    

      
 
 

In the simplified model above, using force 
expressions and the principle II of mechanics for 
the Ox and Oy axes, we obtain the following set of 
trajectory parametric equations (where m is the 
weight of the basketball, vo the initial velocity of 
the ball and the throw angle, the other symbols 
having the already known meaning). 
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A first observation would be that the 
trajectory of the ball depends on three initial 
parameters: the launching speed, the angular 
velocity ω and the throw angle α being determined 
uniquely by them, the rest being constant (ball 
mass, radius, throw height h and distance 
horizontally to the edge of the semicircle D). 

The ball will penetrate into the basket at 
time tf for which x (tf) = d = 6,75 m and y (tf) = H = 
3,05 m, ie when the spatial coordinates of the ball 
are the same as the basket, as can be seen from the 
drawing . By eliminating the time tf in the system 
of two equations represented by these conditions, 
we can deduce a law expressed by a function of the 
type v0(a), showing how the throwing angle varies 
according to the throw angle for the ball to 
penetrate into the basket. Since the angular velocity 
affects the least trajectory and the simplicity, we 
considered a single value of the angular velocity, 
which corresponds to a frequency. This angular 
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velocity is within the range of 0-10 rad / s between 
which it can take values under a normal throw 
(http://www.ntu.edu.sg/home5/pg02259480/balltraj

ectory.pdf). Later, we will also address the case 
without spin, for which the angular velocity is. 
Thus, we have the system: 
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It is noted that after elimination of time a 

second degree equation is obtained in the vo  
 

 
variable, which after a series of algebraic and 
trigonometric processing can be written more 
accessible as follows: 
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Applying the theory of the second degree 

equation, and choosing the positive solution, we get  

the following expression of the throwing speed 
according to the throw angle, for the spin case: 
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Considering that we have a ball with a mass 
m = 0,6 kg, with a radius R = 0,12 m, released from 
a height h = 2,2 m and a horizontal distance from 
the semicircle edge d = 0,2 m, with the spin 
mentioned above, which must penetrate through the 
center of the ring at distance D = 6.75 m from the 
semicircle end and height H = 3.05 m from the 
ground, knowing that atmospheric air has a density 
ρ = 1.168 kg / m 3 and that gravity acceleration is g 
= 9.81 N / kg, we generated a graph based on the 
above equation, which shows for each throwing 
angle the initial velocity required for the ball to 
penetrate through the center of the ring (the 
generation was based on 90 points, one 
corresponding to each angle from 1 ° to 90 °, using 
the special program of origin 7). The graph can be 
found in Figure 2, in a limited form to explicitly 
show the area more interesting (very small or very 
large angles have been eliminated). 

The time t needed for the ball to traverse the 
trajectory until it enters the basket can be found for 
each angle, based on its value and the value of the 
initial speed already calculated, according to the 
formula (used above in system processing): 
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For both time t and angle, a series of 
discrete values, corresponding to the same 
throwing angles α from 1-90 degrees, were 
calculated. These values helped to plot a graph 
representing the angle of entry according to the 

angle of throw α, graphically represented in parallel 
with the one describing the initial velocity required 
by α for a more intuitive analysis. This graph is 
shown in Fig. 3, also shown in a limited form to 
correspond to the speed graph. 

If the angular spin speed is 0, the formulas 
used are simplified. Thus, the velocity formula 
according to the input angle becomes: 
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These formulas also helped to generate 
graphs (a) and b (a) just as with spin spinning. 
These graphs were presented in parallel with the 
previous ones for the comparative study. The graph 
(a) can be seen in Fig. 2 along with the velocity 
graph for the spin case, identified with figure 2, and 
the graph β (α) is represented in Fig. 1. An 
additional graph of type tf (α) Fig. 4. 

Both the graphs and the data on which they 
were drawn (which were only partially introduced 
in this paper) allow us to study the various possible 
trajectories for perfect throwing. In a simplified 
model, we can assume that the optimal trajectory is 
that trajectory for which at the given throwing 
angle, the initial velocity is minimal. This 
hypothesis is viable, because the faster the print 
speed is, the more the player puts out more effort 
during the throw, increasing the likelihood of 
mistakes. 

In this approach, the optimal angle can 
easily be found using the graphs, or by invalidating 
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the derived function vo(α). By removing the 
derivative in the simple, spin-free case, the 
expression and the optimum angle defined above 
are obtained: o

hH
dDarctg 49]
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By analyzing the graphs, we can deduce the 
same value for the optimal angle in the case of 49º 
spinless. More interesting is that even in the case of 
spin, by analyzing the graphs and data, there is a 
similar value for the optimal angle of 
approximately 49º. It is noticeable, however, for 
the spin case that the required initial speed is 
slightly lower, which is advantageous for throwing 
as it will be immediately seen (this 49º angle has 
been marked on blue charts). Also regarding the 
initial throw speed, studies show that under normal 
discarding 
(http://www.ntu.edu.sg/home5/pg02259480/balltraj
ectory.pdf), this speed is preferably not higher than 
10m /s, which would be required according to the 
graphs for very large throwing angles over 70°. 

In addition to the throw rate, there are two 
other important factors that affect the probability of 
signing up for a basket throw. The first is the value 
of the angle under which the ball enters the basket, 
ie β, the probability of enrollment increasing 
proportionally to the value of the sinus at this 
angle. It can be seen from Figures 1 and 3 that this 
angle increases for both the spin and the non-spin 
case with the alpha throw angle, so from this point 
of view, the higher the throw angle, the higher the 
probability of registration. The throw angle can not 
increase very much, due to the second factor 
affecting the probability of enrollment, the time the 
ball stays in the air. The higher the flight time, the 
higher the chances for any mistakes made at the 
time of the throw to affect the trajectory of the ball. 

As the flight time graphs show that it increases 
with the throw angle for both spin and spin (in 
Figure 4 we have illustrated the graph tf (α) for the 
case without spin), we can say that this second 
factor affects the probability of enrolling against 
the first factor (makes the probability decrease with 
the increase of the throw angle). 

Thus, large throwing angles are 
advantageous due to the large angles of entry into 
the basket, and disadvantageous due to the 
difficulty of controlling the trajectory, whereas for 
small angles things happen inversely. Taking into 
account both these two opposite factors, we are 
inclined to say that the optimal angle remains in the 
vicinity of the 49° angle identified by the above-
mentioned method - a more accurate method of 
identifying this angle would imply certain 
probability calculations in relation to the three 
factors : throwing speed, input angle and flight 
time, but these exceed the area of interest of the 
subject. 

It is worth mentioning that the angle of 
entry β can not be less than a certain value under 
which the ball could not pass through the ring. This 
minimum value is given by the 

formula  32arcsinmin R
Rring  where R is the 

radius of the ball, and mRring 225.0  is the radius of 
the basketball ring. This minimum input angle 
value implies a minimum throw angle of  42min  
value valid for both the spin and the non-spin case 
and is deduced from the graphs represented in 
Figures 1 and 3. Both the βmin şi  αmin angles were 
marked in red in the corresponding graphs. 
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After analyzing the above graphs the 
following main observations can be made (the 
majority already mentioned): 

- the speed required to throw vo, first 
decreases with increasing angle α, reaches a 
minimum (placed around 49º) after which it starts 
to grow, the evolution being similar for both the 
spin and the non-spin case (Fig. 2); 

- when the angular velocity ω is higher, the 
required initial velocity vo is smaller, for all angles 
α, (a phenomenon hardly perceptible, the 
differences consisting of several tenths of m / s for 
an increase of the angular velocity by almost 7 rad / 
s, Fig. 2); 

- the value of the angle of entry of the ball 
into the basket b for a certain value α of the angle 
varies very little with the increase of the angular 
velocity ω, the two graphs for the case with spin 
and without spin being practically identical (Fig. 1 
and 2); 

- flight time tf increases with the throw 
angle α, as shown in the spinless graph of Fig. 4. 

To better illustrate the physical phenomena 
presented above, I compiled the following diagram 
that contains some representative trajectories. Each 
trajectory is based on a data set of the type (vo, ω, 
a) of those that were used to generate the previous 
graphs. 

 
 
Trajectory 1: v0 = 8.40 m / s, ω = 0 rad / s, α 

= 42º - encompasses the minimum throw angle for 
which the ball can enter the basket, representative 
for small angles for which it is difficult to enroll 
due to the low angle of entry (tf = 0.96s, β = 32º); 

Trajectory 2: v0 = 8.63 m / s, ω = 0 rad / s, α 
= 60º - trajectory representative for large angles, 
heavily controllable due to high flight time (tf = 
1.40s, β = 55º); 

Trajectory 3: v0 = 8.26 m / s, ω = 0 rad / s, α 
= 49 °; - Trajectory representative of optimal 
angles, characterized by minimum throw speeds, 
and equilibrium between input angle and flight 
time (tf = 1.11s, β = 41º); 

Trajectory 4: v0 = 8.14 m / s, ω = 6.9 rad / s, 
α = 49º; - Trajectory representative of optimal 
spinning angles, with trajectory-like traits 3 except 
for lower throw speeds (tf = 1.13s, β = 41º); 

Trajectory 5: v0 = 8.26 m / s, ω = 6.9 rad / s, 
α = 55º; - the trajectory chosen to have the same 
initial velocity as trajectory 3, but larger angles of 
entry and thrust due to spin (tf = 1.27s, β = 55º); 

Shooting basketball and shot on goal in 
handball (Cazan, Georgescu, Rizescu, 2012) are 
very important moments of the game, the great 
responsibility that depends outcome of the game. 

Synthesizing everything we have mentioned 
above, we can say that the perfect throw at the edge 
of the semicircle involves complex physical 
phenomena. 

 
Conclusion 
Some models and assumptions allow us to 

calculate an approximate optimal angle, which 
would fall in the vicinity of 49°, for throwing 
speeds around a minimum of 8.2 m / s. When the 
throw angle drops noticeably below this value, the 
throw speed increases and the angle of entry in the 
basket decreases, decreasing the chances of 
marking. On the other hand, when the throw angle 
increases noticeably, the throwing speed increases 
in a similar way, and the flying time is the same, 
which reduces the chances of the ball entering the 
basket. 
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The more the player prints the ball at a 
higher spin angular velocity, the more it has to 
print a lower initial velocity, or to throw at larger 
angles (the angles of entry are even greater), in 
both cases improving less chances of success. 
However, the angle or velocity differences are not 
very high, with the spin having an additional 
controlling role, the player achieving a balance 
between the spin, the initial speed and the throw 
angle, trying to maintain the optimal trajectories of 
the type in the last drawings with 3, 4 and 5. 
Balancing and compensating these determinant 
parameters for the ball trajectory becomes essential 
for the player, this being achieved by the last 
movement of the palm preceding the throw. 
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